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ABSTRACT. We introduce the notion of Frobenius ring homomorphisms and show that if
R — A is a Frobenius ring homomorphism then A inherits various homological properties
from R. Especially, for a Frobenius ring homomorphism R — A we show that if R is an
Auslander-Gorenstein ring then so is A with inj dim A < inj dim R.

1. PRELIMINARIES

Let R be a ring. We denote by Mod-R the category of right R-modules and by mod-R
the full subcategory of Mod-R consisting of finitely presented modules. We denote by Pr
the full subcategory of mod-R consisting of projective modules. We denote by R°P the
opposite ring of R and consider left R-modules as right R°°’-modules. In particular, we
denote by Hompg(—, —) (resp., Hompger(—, —)) the set of homomorphisms in Mod-R (resp.,
Mod-R°?) and by gl dim R (resp., gl dim R°P) the right (resp., left) global dimension of
R. Similarly, we denote by inj dim R (resp., inj dim R°P) the injective dimension of the
right (resp., left) R-module R. Sometimes, we use the notation Xr (resp., gX) to stress
that the module X considered is a right (resp., left) R-module. For each complex X* we
denote by Z'(X*®), Z"(X*®) and H'(X*®) the ith cycle, ith cocycle and the ith cohomology,
respectively. We denote by Hom®(—, —) (resp., — ®*® —) the hom (resp., tensor) complex.
Finally, for a module X € Mod-R we denote by add(X) the full subcategory of Mod-A
consisting of direct summands of finite direct sums of copies of X.

In this section, we recall several basic facts which are well-known.

Proposition 1 (Auslander). Let R be a left and right noetherian ring. Then for any
n > 0 the following are equivalent:
(1) In a minimal injective resolution R — I* in Mod-R, flat dim I* < i for all 0 <
1 < n.
(2) In a minimal injective resolution R — J* in Mod-R°P, flat dim J* < ¢ for all
0<?<n.
(3) Forany 1 <i<n+1, any X € mod-R and any submodule M of Exth(X, R) €
mod-R% we have Bxth, (M, R) =0 for all 0 < j < i.
(4) Foranyl <i < n+1, any M € mod-R° and any submodule X of Ext’e, (M, R) €
mod-R we have Exth (X, R) = 0 for all 0 < j < i.

Definition 2 ([5]). Let R be a left and right noetherian ring. We say that R satisfies
the Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all
n > 0, and that R is an Auslander-Gorenstein ring if it satisfies the Auslander condition
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and inj dim R°® = inj dim R < oo. Also, an Auslander-Gorenstein ring R is said to be
Auslander-regular if gl dim R < oo.

Remark 3. Let R be a left and right noetherian ring. Assume dom dim R > 2, i.e., the
first two terms I°, I' in a minimal injective resolution R — I* in Mod-R are flat. It then
follows by [7, Proposition 3.4] and [8, Corollary C] that R is left and right artinian.

Note that commutative Gorenstein rings are Auslander-Gorenstein (see [4]), and that
if R is a left and right noetherian ring, and if inj dim R°® < oo and inj dim R < oo, then
inj dim R°° = inj dim R (see e.g. [14, Lemma A]). Also, if R is a left and right noetherian
ring then gl dim R°? = gl dim R.

Lemma 4. For any X,Y € Mod-R we have a bifunctorial homomorphism
SX,Y X KRR HOHlR(Y, R) — HOHIR(}/, X),IB (024 f —> (y —> l’f(y))
and the following hold.
(1) If either X € Pr or'Y € Pg then Exy is an isomorphism.
(2) If {x x s an epimorphism then X € Pg.
Lemma 5 (Morita). Let A be an arbitrary ring. Then for any V € Mod-A, setting
B =Ends(V) and U = Homu(V, A), the following hold.
(1) If V4 € Py then gB € add(gV).
) If Ay € add(V) then gV € Pgop with A = Endpes (V)P canonically.

(2
(3) If add(Va) = Pa then V@4 U = B as B-bimodules and U @ V = A as A-
bimodules, so that we have equivalences

V @4 —: Mod-A°® = Mod-B° and — ®4U : Mod-A = Mod-B.

Definition 6. Let A, B be rings. If there exists a module V' € Mod-A such that add(Vy) =
Paand B = End4(V), then B is said to be Morita equivalent to A. According to Lemma
5(3), B is Morita equivalent to A if and only if A is Morita euivalent to B. So, we say
that A, B are Morita equivalent (to each other) if one is Morita equivalent to the other.

Lemma 7. For any X € mod-R and any injective E € Mod-R°® we have a bifunctorial
1somorphism

(x.p: X ®r E = Hompo (Homg(X, R), E),x @ a > (f — f(z)a).

Recall that a projective resolution P®* — X is said to be finite if the P’ are finitely
generated.

Lemma 8. Let E € Mod-R be injective. For any X € Mod-R with a finite projective
resolution we have Tor (X, E) = Hompges (Exth (X, R), E) for all i > 0. In particular, if
R is right noetherian, the following hold.

(1) flat dim gE < inj dim R.

(2) If rE is an injective cogenerator then flat dim grF = inj dim R.

Lemma 9. Let ¢ : R — A be a ring homomorphism. Then for any X € Mod-A and
Y € Mod-R we have a bifunctorial isomomorphism

nxy : Homg(X,Y) = Homu (X, Homg(A,Y)), f — (x — (a — f(za))).



In particular, if I € Mod-R is injective (resp., an injective cogenerator) then so is

Hompg(A, I) € Mod-A.

Lemma 10. Let ¢ : R — A be a ring homomorphism with Ext' (A, R) = 0 for all i > 1
and set V.= Hompg(A, R). Theninj dim V, < inj dim R, where the equality holds if either
¢ 1s a split monomorphism of R-bimodules or ¢ is a split monomorphism in Mod-R° and
inj dim R < oo.

Example 11. Let R — A be a ring homomorphism and set I' = Endz(A) with ¢ :
A—Ta— (x+— ax). Then eotp =idy with e : I' = A, v — (1) and ¥ is a split
monomorphism of (A4, R)-bimodules.

Definition 12. A module X € Mod-R is said to be torsionless (resp., reflexive) if the
evaluation map

ex : X = Homper (Homg(X, R),R),z — (f — f(2))
is a monomorphism (resp., an isomorphism).

Definition 13. A ring homomorphism ¢ : R — A is said to be separable (resp., an
epimorphism) if the multiplication map 7 : AQrA — A, a®0b +— ab is a split epimorphism
(resp., an isomorphism) of A-bimodules.

Example 14. Let I" = My(R) be the ring of 2 x 2 full matrices over a ring R and A =
To(R) the subring of I" consisting of upper triangular matrices. Then the inclusion A — I’
is a ring epimorphism and the canonical ring homomorphism R — I')r — diag(r,r) is
separable.

Lemma 15. Let ¢ : R — A be a separable ring homomorphism. Assume either rA
is flat or AR is projective. Then for any X,Y € Mod-A we have a bifunctorial split
monomorphism Exty(X,Y) — Ext%(X,Y) for all i > 0 and hence gl dim A < gl dim R.
If Agr € Pg then inj dim A < inj dim R.

2. FROBENIUS RING HOMOMORPHISMS

Throughout the rest of this note, we denote by Ggr the full subcategory of mod-R
consisting of X € mod-R admitting a finite projective resolution and with Ext’ (X, R) = 0
for all © > 1. Obviously, we have Pr C Gr C mod-R. Note also that if R is right
noetherian then every finitely generated X € Mod-R admits a finite projective resolution.

Throughout this section, we fix a ring homomorphism ¢ : R — A and set V =
Hompg(A, R) which is an (R, A)-bimodule.

Lemma 16. If Ar € Gg then for any injective E € Mod-R°P the following hold.
(1) Tor(A,E) =0 for alli > 1.
(2) flat dim 4A ®r F < flat dim gE.
(3) If Va is flat then s A ®@g E is injective.
(4) Assume Vy is faithfully flat. If RE is an injective cogenerator then so is sAAQp E.

Corollary 17. If Ag € Gg and V4 is flat then inj dim 4A ®@p M < inj dim M for all
M € Mod-R°P.



Proposition 18 (cf. [9, Proposition 1.7(1)]). Assume Ar € Ggr, rA is finitely generated
and Vy is faithfully flat. If R is Auslander-Gorenstein then so is A.

In case A has been known to be left and right noetherian, in the proposition above we
need not to assume rA is finitely generated.
As in Lemma 4, for any X € Mod-R we have a functorial homomorphism

Ex : X ®rV — Hompg(A, X), 2@ v — (a — zv(a)).

Lemma 19. If Ar € Gg then for any X € Mod-R with flat dim Xp < oo the following
hold.

(1) Tor(X,V) =0 for all i > 1.

(2) &x is an isomorphism.

(3) flat dim Hompg(A, X)a < flat dim Xg + flat dim Vjy.

Definition 20 (cf. [1] and [11, 12]). We call ¢ a Frobenius ring homomorphism if Ap € Gr
and add(Vy4) = P4 (cf. also Proposition 51 below). In case ¢ is injective, we identify R
with ¢(R) C A and call A a Frobenius extension of R.

Proposition 21. Assume R is right noetherian and ¢ is Frobenius. Then a ring homo-
morphism ¢ : A — I is Frobenius if and only if so is 1 o ¢.

Remark 22. In the proposition above, the "only if” part holds without the assumption
that R is right noetherian. Namely, if I’y admits a finite projective resolution )* — I in
Mod-A, and if every Q¢ admits a finite projective resolution P*® — Q' in Mod-R, then we
have a double complex P*® over Pg the total complex of which yields a finite projective
resolution of I'g.

Theorem 23. Assume R is left and right noetherian. If ¢ is Frobenius then the following
hold.

(1) A is left and right noetherian.

(2) Ifinj dim R°® = inj dim R = d then inj dim A°®? = inj dim A <d.
(3) If R satisfies the Auslander condition then so does A.

(4) If R is Auslander-Gorenstein then so is A.

In the theorem above, we do not know whether or not rpA is finitely generated. Also,
it may happen that inj dim A < d (see Example 26 below).

Throughout the rest of this section, we set I" = Endger(A)°P, which contains A as
a subring via the injective ring homomorphism A — I'Ja — (z — za), and set U =
Hompgor (A, R) and A = Homyu(I, A).

Lemma 24. If A € Pgror then Ur € Pgr and the following hold.
(1) I'2U ®g A as I'-bimodules. In particular, 'y € Pa.
(2) A= A®r A as (A, I')-bimodules.
(3) If add(Ug) = add(Ag) then add(Ar) = Pr and hence I is a Frobenius extension
of A.
(4) If add(rA) = Pprevr then add(I'4) = Pa.

Theorem 25. Assume add(grA) = Prer and add(Ag) = Pr. Then the following hold.



(1) If A is left and right noetherian then so is R.
(2) If A is Auslander-Gorenstein then so is R.
(3) If ¢ is Frobenius then inj dim A = inj dim R.

Example 26. Assume R is a commutative noetherian local ring and A is an R-algebra,
i.e., Im ¢ is contained in the center of A, such that A is a free R-module of finite rank.
Then I' is a Frobenius extension of A and is Morita equivalent to R, so that if A is
Auslander-Gorenstein then R has to be Gorenstein. However, even if A is Auslander-
Gorenstein, it may happen that inj dim A > inj dim I" = dim R. For instance, consider
the case where A = Ty(R), the ring of 2 x 2 upper triangular matrices over R. Then A
is an Auslander-Gorenstein ring with inj dim A = dim R + 1. In fact, V4 ¢ P4 and A is
not a Frobenius extension of R.

3. FROBENIUS BIMODULES

In this section, we introduce the notion of Frobenius bimodules. If R is a subring of a
ring A such that A € Pr and A = Hompg(A, R) as (R, A)-modules, then in [1] the ring
extension A/R is said to be a Frobenius extension of first kind (cf. also [11, 12]). We will
generalize this notion.

To begin with, we notice the following facts.

Proposition 27. Let ¢ : R — A be a Frobenius and separable ring homomorphism with
Agr € Pgr. If R is Auslander-regular then so is A.

Proposition 28. Let V' be an (A, R)-bimodule with 4V € Paer and set I' = End gop (V)P
with R — I',r — (v~ vr). Then the following hold.

(1) I'y € add(VR)

(2) If add(Hompg(V, R)4) = add(Homer (V, A) 4) then add(Hompg (I, R)r) = Pr.

Definition 29. An (A, R)-bimodule V is said to be Frobenius if Vi € Pg, 4V € Paor
and Hompg(V, R) = Hom 4o (V, A) as (R, A)-bimodules.

Example 30. Let V € Mod-A with add(V4) = P4 and set B = End4(V'). It then follows
by Lemma 5 that V' is a Frobenius (B, A)-bimodule.

Proposition 31. Let V be an (A, R)-bimodule and A a (I, A)-bimodule. If both V' and
A are Frobenius then so is A®@4 V.

Lemma 32. Let V be a Frobenius (A, R)-bimodule and set I' = Ender (V) and 9 :
R — I'yr — (v vr). Then the following hold.

(1) Hompg(V, R) is a Frobenius (R, A)-bimodule.

(2) I' is a Frobenius (I', R)-bimodule.

Lemma 33. For any ring homomorphism ¢ : R — A the following are equivalent.

(1) A is a Frobenius (A, R)-bimodule.
(2) A is a Frobenius (R, A)-bimodule.

Throughout the rest of this section, we fix a ring homomorphism ¢ : R — A and set
V = Hompg(A, R), I' = Endger(A)°® and ¢ : A — I',a — (z — za).



Proposition 34. If Ap € Pr and 4 A = 4V then we have p : Endg(A) = I' such that
v =pot withy' : A— Endgr(A),a— (x — ax).

Theorem 35. If A is a Frobenius (A, R)-bimodule then the following hold.
(1) ¢ is Frobenius.

(2) I' is a Frobenius (I, A)-bimodule.
(3) If add(rA) = Pror then add(al’) = Paor.

Corollary 36. Let ¢y : Ag — Ay be a ring homomorphism and set A; 1 = EndAfgl(Ai)‘)p
and ¢; : Ay = Air1,a — (z — xa) for i > 1 inductively. If Ay is a Frobenius (Ay, Ay)-
bimodule then A; is a Frobenius (A;, A;_1)-bimodule for all i > 1.

In the following, we denote by 7 : A ®r A — A,a ® b — ab the multiplication map.
Note that ¢ is separable if and only if there exists 6 € A ®g A such that w(0) = 14 and
ad = da for all a € A.

Proposition 37. The following hold.
(1) If ¢ is separable then v is a split monomorphism of A-bimodules.
(2) If AA®g A is reflexive, and if ¥ is a split monomorphism of A-bimodules, then ¢
18 separable.

Lemma 38. Assume A is a Frobenius (A, R)-bimodule with ¢ : A =V an isomorphism
of (R, A)-bimodules. Then T = p(1a) : A — R is a homomorphism of R-bimodules and
the following hold.

(1) ¢’ : A= Hompos (A, R),a — at as (A, R)-bimodules.

(2) €:A®r A S TN a®br (v 7(xa)b) as A-bimodules.

(3) &: A®r A= Endg(A),a @b (x> ar(bx)) as A-bimodules.

(4) §=pod.

Theorem 39. Assume A is a Frobenius (A, R)-bimodule. Let p : A = V be an iso-
morphism of (R, A)-bimodules and assume 7 = ¢(14) : A — R is a split epimorphism of
R-bimodules. Then the following hold.

(1) I' is Morita equivalent to R.

(2) 1 is separable.

(3) If A is Auslander-regular then so is R.

Example 40. Consider the case where R is a commutative field and A = R[t]/(¢*). Then,
setting 7 : A — R,ro+rit — r1, we have A = V,r — r7 as (R, A)-bimodules. Thus A is a
Frobenius (A, R)-bimodule. Since the enveloping algebra A° = A?®@pA = Rz, y|/(x?, y?)
is local, and since dimrpA¢ # dimgrA, ™ does not split in Mod-A¢, i.e., ¢ is not separable.
On the other hand, since 7 is a split epimorphism of R-bimodules, 1) is separable.

4. DOUBLE CENTRALIZER

Throughout this section, we fix a finitely generated projective module P € Pg and
set A = Endg(P) and I' = Endger (P)°® with ¢ : R — I''r — (z — zr) the canonical
ring homomorphism. We will provide a sufficient condition for ¢ to be a Frobenius ring



epimorphism with I'p € Pr. We refer to [13] for general theory of localization in module

categories.
In the following, we set @@ = Hompg(P, R) and V = @ ® 4 P. Note that by Lemma 5(1)

1A € add(4P) and A4 € add(Q4) and that by Lemma 5(2) Pr € Pr with A = Endp(P)
canonically. Also, by Lemma 4(1) Homg(P, —) = — ®g @ and Hompge (Q, —) = P ®p —.

Lemma 41. The following hold.

(1) 4A € add(4P) and Pr € Pr with A = Endp(P) canonically, so that I'r €
add(Pr) if and only if 4P € Paor.

(2) rRQ € Pror with Pr — Hompes (Q, R)r,x — (f — f(x)) and A = Endges(Q)°P
canonically, so that Ay € add(Q4) and Pr € add(Vr).

(3) P®r Q = A as A-bimodules, so that P @ V' = P as (A, I")-bimodules and
VRrQ = Q as (R, A)-bimodules. In particular, VgV =V as (R, I')-bimodules.

(4) Hompgeo (V, R) = I' as (I, R)-bimodules, so that gV € Prop if and only if I'r € Pgr
with V= Hompg(I', R) as (R, I')-bimodules.

Lemma 42. The following hold.
(1) (P®gr —)o(Q®4—) = Hompgor(Q, —) o Hom gop (P, —) = Iygoq-ac0, S0 that both
rQ ®4 — and Hom gepr (4 Pr, —) are fully faithful.
(2) I' = Endges (V)P canonically, so that if gV € Pgres then I'r € add(Vr).
(3) I' = Endgers (I")°P canonically, so that if kR € add(gl") then ¢ : R = I.

Proposition 43. If 1" ®g I is torsionless then ¢ is a ring epimorphism.

Lemma 44. The following hold.
(1) For any M € Mod-R°® we have a functorial homomorphism in Mod-1"°P
wy : I'®@r M — Homper (P, P @r M),y @ m +— (z — 2y @ m)
which 1s an isomorphism if either RV € Prop or gM € Prop.

(2) Por ' = P,x ® v — xv, so that Homp(P, —) = Homg(P,—) on Mod-I" and
P®r— =2 P®r— on Mod-I"?. In particular, if either gV € Prop or I’ € Prov
then ¢ is a ring epimorphism.

(3) Homaor (P, A) 2 Homp(P,I') = I'Q@r Q as (I', A)-bimodules, so that if AP € P aop
then P is a Frobenius (A, I')-bimodule.

Theorem 45. If gV € Prov then the following hold.

(1) ¢ is a ring epimorphism with I'r € Pg, so that inj dim I' < inj dim R and
gl dim I < gl dim R.

(2) If Vi € Pr then ¢ is Frobenius.

Lemma 46. Lete¢:V — R, f @ x — f(z) and a =Im e. Then the following hold.

(1) a®> = a and Ker(— @ Q) = Mod-(R/a).

(2) RV € Prov if and only if AP € Paor.

Lemma 47. If 4P € Pjor then the following hold.
(1) HOIHR(FFR, —) = HOHIR(APR, —) ®A Pp.
(2) — ®a Pr: Mod-A = Mod-T".



(3) Vi € Pr if and only if Q4 € Pa.

Proposition 48. The following are equivalent.

(1) RV S PRop and Vp € Pp.
(2) AP € Pyor and Q4 € Pa.

Example 49. (1) Let V be an (A, B)-bimodule with 4V € Paer and set

[ AV (14 0
R—(O B) and e—( 0 0).
Then, setting P = eR, we have A = eRe and (Q = Re, so that sP = A @ AV € Paop
and Q4 = Ay € Py
(2) Let A be a commutative ring and R an A-algebra with R4 € P4. Assume R contains
an idempotent e with eRe = Ae. Then, setting P = eR, we have A = eRe and ) = Re,

so that 4P € Paor and Q4 € Pa.

5. (GORENSTEIN PROJECTIVES

In this final section, we deal with some questions in homological algebra which are
still open. We denote by G% the full subcategory of Gr consisting of X € Gr with
Hompg(X, R) = 0. The generalized Nakayama conjecture asserts that if R is right noe-
therian then G% would contain no simple module (see [3] for details).

To begin with, we recall the notion of Gorenstein projective modules.

Definition 50 ([6]). A module X € mod-R is said to be Gorenstein projective if it is

reflexive with X € Gz and Hompg(X, R) € Ggop, i.e., there exists a complex P* over Pgr
such that Z°(P*) & X and HY(P*) = H*(Hom%(P*, R)) = 0 for all i € Z.

It is obvious that if Xp is reflexive (resp., Gorenstein projective) then so is gHompg(X, R).
Thus the notion of Frobenius ring homomorphisms could be slightly modified to be sym-
metric in the following sense.

Proposition 51. Let ¢ : R — A be a ring homomorphism and set V = Hompg(A, R),
B =Ends(V) and: R — B,r +— (v 1v). Then the following hold.
(1) If Ag is reflexive (resp., Gorenstein projective) and Vo € Pa then rB is reflexive
(resp., Gorenstein projective) and Hompgeo (B, R) =2V as (B, R)-bimodules.
(2) If add(Va) = Pa then A = Endgoes (V)P canonically and add(gV) = Ppgop.
(3) If A=V as (R, A)-bimodules then there exists a ring isomorphism o : A = B
such that ¢ = o o ¢.

Throughout the rest of this section, we fix a complete set of non-isomorphic simple
modules {S)}rea in Mod-R°P and for each A € A we denote by E)\ = Froo(S)) the
injective envelope of Sy in Mod-R°P.

Lemma 52. For any M € Mod-R° with Hompge» (M, Ey\) = 0 for all X € A we have

M =0, i.e., llxepaF\ € Mod-R s an injective cogenerator.

Corollary 53. For any X € mod-R the following hold.
(1) Homg(X, R) = 0 if and only if X ®g E)\ =0 for all A € A.



(2) If R is right noetherian then, for any i > 0, Exth(X,R) = 0 if and only if
Torf (X, E\) = 0 for all A € A.

Lemma 54 ([10, Corollary A.2]). Assume R is left and right noetherian. If every X € Gg
is torsionless then Ggr consists only of Gorenstein projectives.

Throughout the rest of this section, we fix a ring homomorphism ¢ : R — A and set
V= HOH]R(A, R)

Proposition 55. If A € mod-R then we have
flat dim V4 = sup{inj dim 4A ®@r E) | A € A}.

Example 56. If A = Ty(R), the ring of 2 x 2 upper triangular matrices over R, and
¢: R— A, r— diag(r,r), then Ap € Pg and proj dim V4 = 1.

In the following, we assume Ar € Gr and inj dim 4A ®r F)\ < oo for all A € A. In
addition, to ensure that every finitely generated X € Mod-R admits a finite projective
resolution, we assume R is right noetherian. Note that A also is right noetherian.

Lemma 57. For any X € G4 the following hold.

(1) Xg € Gr.
(2) If X4 € GY then Xg € GY.
(3) If X is torsionless then so is X 4.

Theorem 58. The following hold.

(1) If G = {0} then G5 = {0}.

(2) Assume Xg is semisimple for all simple X € Mod-A. If the generalized Nakayama
congjecture holds true for R then so does for A.

(3) Assume both R and A are left and right noetherian. If Gr consists only of Goren-
stein projectives then so does Gy4.

Remark 59 ([2]). Let X € mod-R with P* — X a finite projective resolution and set
M, = Z"(Hom%(P*, R)) for n > 1. Then for any n > 1, if ExtR(X,R) =0for 1 <i <mn,
the following hold.

(1) Extle,(M,, R) =0 for 1 <i < n and Exthop (M, R) = Extpe, (M, R).
(2) If Homp(X, R) = 0 then X = Ext}op(M,, R) with proj dim M,, < n.
(3) X is torsionless if and only if Extle, (M, R) = 0.

Remark 60. (1) J.-I. Miyachi has pointed out that in general Gz may contain a module
which is neither simple nor torsionless (see [10, Example A.3]).

(2) For a minimal injective resolution R — E* in Mod-R, it is possible that @&, E*
is an injective cogenerator but @&7_, E* is not for any n > 0. For instance, if R is a
commutative Gorenstein ring of infinite dimension, then for any n > 0 there exists a
maximal ideal m of height d > n and we have Exth(R/m,R) = 0 for 0 < i < d and
Extb(R/m, R) # 0 (see [4] for details).
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